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SUMMARY

The primary motor cortex (M1) exhibits a protracted period of development, including the development of a
sensory representation long before motor outflow emerges. In rats, this representation is present by post-
natal day (P) 8, when M1 activity is ‘‘discontinuous.’’ Here, we ask how the representation changes upon
the transition to ‘‘continuous’’ activity at P12. We use neural decoding to predict forelimb movements from
M1 activity and show that a linear decoder effectively predicts limbmovements at P8 but not at P12; instead,
a nonlinear decoder better predicts limb movements at P12. The altered decoder performance reflects
increased complexity and uniqueness of kinematic information inM1.We next show thatM1’s representation
at P12 is more susceptible to ‘‘lesioning’’ of inputs and ‘‘transplanting’’ of M1’s encoding scheme from one
pup to another. Thus, the emergence of continuous M1 activity signals the developmental onset of more
complex, informationally sparse, and individualized sensory representations.

INTRODUCTION

Perhaps the most striking feature of infant cortical activity is its

discontinuity: periods of silence are punctuated by bursts of

population-level activity.1,2 This early phase of discontinuity

ends with the sudden and dramatic onset of continuous cortical

activity. Whereas in humans this transition occurs around the

time of birth,3 in infant rats and mice, it occurs at the end of

the second postnatal week.4–8 In fact, the onset of continuous

cortical activity is but one aspect of a more global reorganization

of brain dynamics that includes a shift in GABAergic func-

tioning,9,10 the proliferation and diversification of inhibitory inter-

neurons,11–14 accelerated myelin deposition,15 and the onset of

brain rhythms such as delta16–18 and theta.19

In rats, continuous activity emerges in the primary motor cor-

tex (M1) between postnatal days (P) 8 and P12.6 Despite its

name, M1 at these ages does not produce movement but

instead functions exclusively as a somatosensory struc-

ture.20–22 Accordingly, M1 activity reflects sensory input arising

from self- or other-generated movements (i.e., reafference or

exafference, respectively). Recently, we showed that neurons

within M1’s nascent somatosensory map are tuned to limb ki-

nematics, as is the case for M1’s adult motor map.23,24 Specif-

ically, we found precise sensory tuning to movement amplitude

at P8—especially for the limb twitches that occur during active

(rapid eye movement [REM]) sleep.6 However, upon the emer-

gence of continuous activity at P12, this tuning disappeared.

Was M1’s kinematic tuning truly lost, or was it only obscured

by the continuous activity? Here, we address this and related

questions using neural decoding, a computational technique

that allows us to predict the timing and amplitude of forelimb

movements based solely on M1 activity. Our findings demon-

strate that M1’s processing of sensory information is intact but

substantially transformed after this fundamental transition in

cortical dynamics.

RESULTS

We performed neural decoding using a previously published

dataset from P8 and P12 rats (n = 8 at each age).6 This dataset

consists of 1-h recordings of M1 unit activity and video-based

records of 3D forelimb displacement. For all decoding proced-

ures, each 10-ms bin of forelimb displacement was predicted

by M1 unit activity within a 240-ms window (i.e., 12 bins

before and after). Each recording was divided into training

(36 min; 60%) and testing (9 min; 15%) datasets; a validation

dataset (15 min; 25%) was held back until the final model pa-

rameters were established. All analyses were performed on

the validation dataset to ensure an unbiased assessment of

decoder performance.25

Movement encoding is obscured by continuous activity
at P12
Discontinuous M1 activity presents a strong contrast between

periods of movement (when reafference triggers neural activity)

and rest (when there is little to no activity). Moreover, at P8, we

previously found that forelimb twitches trigger rate-codedM1 re-

sponses that correlate with twitch amplitude.6 Accordingly, we

predicted that a linear decoder would accurately predict the

temporal and spatial properties of forelimb movements at P8.
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In contrast, because continuous activity at P12 occludes the

temporal and spatial relations between M1 activity and forelimb

movements, we predicted that a linear decoder would no longer

predict forelimb movements at that age. Indeed, by comparing

actual with predicted limb displacement using a linear decoder

(Figure 1A, blue lines), we confirmed both predictions: a linear

decoder is sufficient to predict forelimb movements at P8 but

not at P12.

The observed loss of decoding accuracy at P12 must be

reconciled with the fact that M1 activity is highly correlated

with limb kinematics in adults.23,24 Accordingly, we hypothe-

sized that M1 activity continues to represent movement kine-

matics after the emergence of continuous activity but that this

representation can no longer be captured by a linear decoder.

We tested this hypothesis using a nonlinear decoder (long

short-term memory [LSTM] decoder26) and found that it effec-

tively decodes forelimb movements at P12, as well as at P8 (Fig-

ure 1A, orange lines).

To quantify decoder performance, we computed the propor-

tion of variance explained (r2) between the actual and predicted

forelimb displacement (Figure 1B). This metric represents the

amount of temporal and spatial kinematic information available

in M1 during a forelimb movement. An ANOVA revealed a signif-

icant age 3 decoder interaction (F(1, 14) = 19.15, p < 0.001,

adjusted [adj.] h2p = 0.548; Figure 1B), indicating that the linear

A

B C

Figure 1. Neural decoding in M1 predicts

forelimb movements across the transition to

continuous cortical activity

(A) Representative data from a P8 (left) and a P12

(right) rat. From top to bottom: M1 unit activity where

each row denotes an individual unit and each verti-

cal tick denotes an action potential; actual forelimb

displacement (black lines) in mm, representing the

Euclidean distance traveled by the forelimb in 3D

space; forelimb displacement as predicted by a

linear decoder (blue lines); forelimb displacement as

predicted by an LSTM nonlinear decoder (orange

lines). Shaded blue regions represent periods of

active sleep.

(B) Mean (+SEM) overall performance of the linear

(blue bars) and LSTM (orange bars) decoders for P8

and P12 rats, as measured by r2 (the proportion of

variance in forelimb displacement explained by the

decoder). Brackets denote a significant interaction

between age and decoder (p < 0.05). Asterisk de-

notes significantly better performance of the linear

decoder at P8 compared with at P12 (p < 0.05).

(C) Left: same as in (B) but for periods of forelimb

movement. Right: same as in (B) but for nonmove-

ment periods; brackets denote that both decoders

performed significantly better at P8 than at P12

(p < 0.05).

decoder performed significantly better at

P8 than at P12 (F(1, 14) = 10.08, p =

0.007, adj. h2p = 0.376) and that the

nonlinear decoder significantly outper-

formed the linear decoder at both ages.

Thus, M1 activity indeed preserves kine-

matic information after continuous activity emerges at P12, but

this information is only observable using a nonlinear decoder.

State-dependent encoding of movement-related
information
Next, we confirmed that decoder performance was driven byM1

activity specifically during periods of limb movement. Decoding

was performed across the entire recording period, after which

we segmented the data into movement and nonmovement pe-

riods as described previously.6 Successful decoder perfor-

mance was attributable to movement periods (F(1, 14) = 7.35,

p = 0.017, adj. h2p = 0.297; Figure 1C, left) and not to nonmove-

ment periods (F(1, 14) = 0.06, p = 0.817, adj. h2p < 0.001; Fig-

ure 1C, right). Although there was a main effect of age on

decoder performance during nonmovement periods (F(1, 14) =

9.15, p = 0.009, adj. h2p = 0.352), this effect was negligible

compared to the performance of the decoder during movement

periods.

Because the previous analysis of movement periods did not

distinguish between twitches and wakemovements, we next as-

sessed decoder performance separately for each type of move-

ment (Figures 2A, S1A, and S1B). For this analysis, we used a 2-s

window centered on each twitch and wake movement. For

twitches, a main effect of age indicated that decoder perfor-

mance was significantly better at P8 than at P12, regardless of
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which decoder was used (F(1, 3,808) = 534.25, p < 0.001, adj.

h2p = 0.123; Figure 2B, left). Unexpectedly, for twitches, the

nonlinear decoder’s performance did not improve on the linear

decoder’s performance at either age (F(1, 3,808) = 1.67, p =

0.197, adj. h2p < 0.001). This finding suggests that M1 activity

no longer represents twitch kinematics after continuous activity

emerges (even though reafference from twitches continues to

trigger M1 activity at P12 and older ages).27

In contrast to twitches, for wake movements, the nonlinear

decoder performed significantly better than the linear decoder

at P8 and P12 (F(1, 1,340) = 340.91, p < 0.001, adj. h2p = 0.202;

Figure 2B, right). This finding is particularly surprising at P8

because reafference from wake movements is blunted relative

to twitches at this age.20,21 Thus, wake movements appear to

be represented in a nonlinear fashion as early as P8, and this rep-

resentation persists despite the transition to continuous activity

at P12. For both decoders, there was a small but statistically sig-

nificant decrease in performance at P12 compared with at P8

(F(1, 1,340) = 18.24, p < 0.001, adj. h2p = 0.012), suggesting

that the emergence of continuous activity modestly interferes

with M1’s representation of wake movements.

It is possible that by decoding across the entire recording

period, the decoder model was biased toward predicting wake

movements at the expense of twitches, leading to relatively

poor twitch predictions at P12. However, we found that decod-

ing sleep and wake periods separately did not improve decoder

performance for twitches at either age (Figure S1C).

Altogether, these results indicate that althoughM1’s represen-

tation of twitch kinematics diminishes between P8 and P12, its

representation of wake-movement kinematics is robust at

both ages.

Continuous activity increases the uniqueness of M1
information
The presence of decorrelated, continuousM1 activity at P12 rep-

resents a transition from a ‘‘dense’’ (i.e., redundant) encoding of

information to amore energy- and information-efficient ‘‘sparse’’

code.28 Accordingly, we predicted that the random removal of

neural input would degrade decoder performance more at P12

than at P8.

To test this hypothesis, two ‘‘lesion’’ experiments were per-

formed. In the first ‘‘unit lesion’’ experiment, a varying percent-

age of M1 units (up to 90%) recorded from a given pup was

randomly discarded from the decoding process (Figure 3A,

top). The resulting decoder performance was then compared

with the decoder performance of the ‘‘intact’’ model (i.e., 0%

of units removed). (Only the nonlinear decoder was used for

these experiments.) As predicted, although unit lesions

degraded decoder performance at both ages, the loss was

significantly greater at P12 than at P8 (F(1.50, 20.94) = 18.60,

p < 0.001, adj. h2p = 0.539; Figure 3A, bottom). For example, le-

sioning 50% of units led to a decoder performance of 70.4% ±

3.9% at P8, compared with 41.9% ± 4.4% at P12. Differences

in decoder performance were statistically significant across the

range of unit lesions (all p % 0.005).

The second ‘‘spike lesion’’ experiment was performed in

a similar fashion. Here, a varying percentage of spikes (i.e.,

action potentials) across all M1 units (up to 90%) was

randomly discarded from the decoding process (Figure 3B,

top). As predicted, spike lesions resulted in significantly

greater declines in decoder performance at P12 than at P8

(F(5.05, 70.63) = 8.41, p < 0.001, adj. h2p = 0.330; Figure 3B,

bottom). For example, lesioning 50% of spikes led to a

decoder performance of 79.5% ± 1.8% at P8, compared

with 51.0% ± 3.2% at P12. Again, differences in decoder per-

formance were statistically significant across the range of

spikes removed (all p % 0.03).

That both lesions decreased decoder performance more at

P12 than at P8 implies that each M1 unit’s activity contains

more unique information about limb kinematics at the older

age. To test this implication, we measured the mutual informa-

tion between a target M1 unit and a randomly selected subset

of units29; the size of the subset varied from 1 additional unit to

all available units for a given pup. Here, mutual information re-

fers to the predictability of the target unit’s response (to a

movement) when the responses of the subset are known. By

definition, mutual information only increases when the subset

contains nonredundant (i.e., unique) information about the

target unit.30 We found that adding units increased mutual in-

formation significantly more quickly at P12 (38.7% ± 1% units

to reach 0.5 bits) than at P8 (50.9% ± 1.2% units to reach

0.5 bits; t(436.01) = 7.64; p % 0.001, adj. h2 = 0.116; Figure 3C;

note that 1 bit is the theoretical maximum value). Together,

these results support the notion that the onset of continuous

activity at P12 increases the uniqueness of information avail-

able in M1.

A B Figure 2. Decoder performance for twitches

and wake movements varies by age

(A) Forelimb displacement for actual movements

(black lines) compared with a predicted twitch (blue

line, top) and a predicted wake movement (red line,

bottom). A single representative twitch and wake

movement is shown.

(B) Mean (+SEM) decoder performance (r2) for

twitches (left; blue bars) andwakemovements (right;

red bars). For each type of movement, the linear

decoder is compared with the LSTM decoder

across P8 and P12 rats. For twitches, brackets

denote that both decoders performed significantly

better at P8 than at P12 (p < 0.05). For wake

movements, brackets denote that the LSTM decoder performed significantly better than the linear decoder at both ages (p < 0.05). Horizontal dashed white lines

indicate chance performance using a shuffling procedure.
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M1’s encoding scheme is more ‘‘generic’’ at P8 than at
P12
The finding that M1’s representation of movement at P8, but not

at P12, is so redundant as to be robust to the removal of neural

activity raises an intriguing hypothesis: namely, that discontin-

uous activity is not only redundant but also generic to the point

of being interchangeable between individual pups. Such a prop-

erty could reflect a gross encoding scheme during early develop-

ment when somatotopic relations among M1 units and forelimb

muscles are still being established. Accordingly, we predicted

that after ‘‘transplanting’’ the encoding scheme of one pup into

that of another, decoder performance would remain high at P8

but would be degraded at P12 (Figure 4A).

To test this prediction, M1 activity for a ‘‘recipient’’ pup was

decoded using the model weights (inferred encoding scheme)

transplanted from a same-age ‘‘donor’’ pup. M1 units were

aligned between the donor and recipient pups according to

firing rate (i.e., sorted from highest to lowest firing rates). For

both P8 and P12 rats, 29 such donor-recipient pairs were

generated. (Again, only the nonlinear decoder was used.) As

predicted, decoder performance was significantly better

across P8 pairings than across P12 pairings (t(56) = 11.71,

p < 0.001, adj. h2 = 0.705; Figures 4B and 4C). To ensure

that this finding was not simply due to our method of aligning

firing rates across pups, we performed 30 additional tests

using random unit-unit pairings; this randomization had no

substantive effect on the age-related difference in decoder

performance after transplantation (Figure 4D). Thus, contin-

uous activity is associated with increased individualization of

M1 encoding schemes at P12.

DISCUSSION

We previously reported that M1 units encode movement kine-

matics—especially twitch amplitude—at P8 but that this encod-

ing disappears with the onset of continuous activity at P12.6 That

finding raised the possibility that M1’s somatosensory represen-

tations are ‘‘reset’’ at P12 by the sudden change in cortical dy-

namics. An alternative possibility was that the somatosensory

representation persists at P12 but is obscured by the continuous

activity. We considered the second possibility more likely than

the first; accordingly, we predicted that a nonlinear decoder

A B C

Figure 3. M1 activity contains more unique information at P12 than at P8

(A) Top: representation of the ‘‘unit lesion’’ experiment. The top row of nodes represents the individual M1 units input to the LSTM decoder. Red Xs denote units

that were ‘‘lesioned’’ (i.e., removed from the decoding process). The second row of nodes represents the hidden layer of the LSTMdecoder. The black trace at the

bottom represents forelimb displacement as predicted by the LSTM decoder. Bottom: mean (±SEM) decoder performance (measured as the percentage change

in the ‘‘lesioned’’ r2 relative to the ‘‘intact’’ r2) for P8 (blue line) and P12 (green line) rats as a function of the percentage of units lesioned. Asterisk denotes

significantly worse decoder performance at P12 than at P8 across the range of units lesioned (p < 0.05).

(B) Top: representation of the ‘‘spike lesion’’ experiment. ‘‘Intact’’ activity represents baseline M1 activity, where each row represents an individual unit and each

vertical tick denotes an action potential. ‘‘Lesioned’’ activity represents M1 activity after 90% of individual spikes were removed from the decoding process.

Bottom: same as in (A) but for the spike lesion experiment. Asterisk denotes significantly worse decoder performance at P12 than at P8 across the range of spikes

lesioned (p < 0.05).

(C) For P8 (top, blue) and P12 (bottom, green) rats, mutual information (in bits) is shown as a function of increasing size of the predictor subset (expressed as a

percentage of themaximum size). Solid lines represent themean increase inmutual information in the target unit; translucent lines represent individual target units

(P8: n = 217 units; P12: n = 250 units). Dashed lines show the mean percentage of predictor units required to achieve 0.5 bits (half the theoretical maximum);

horizontal boxplots show the percentage of predictor units required to achieve 0.5 bits for individual target units.
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would reveal that M1 continues to encode movement-related in-

formation at P12.

Our prediction was confirmed at P12 for wake movements but

not for twitches. The latter result surprised us because twitch-

related reafference continues to trigger M1 activity at P12 and

beyond.27 Moreover, wake movements were better recon-

structed by the nonlinear decoder at P8, indicating that a signif-

icant component of M1’s representation of wake movements is

nonlinear even before the onset of continuous activity. This last

finding also surprised us because, at this age, the brainstem

selectively dampens (though does not eliminate) wake-related

reafference in M120,21,31; also, our previous analysis using a

linear model led us to conclude that M1 units are not sensitive

to wake-related kinematics at either age.6 Thus, the present

finding that, at P8, M1 encodes twitches and wake movements

through linear and nonlinear means, respectively, adds another

dimension to our understanding of M1’s state-dependent sen-

sory representation in early development.

It is not clear why nonlinear decoder performance was so

much better for wake movements than for twitches. The expla-

nation may reside in the fact that wake movements, which

involve multiple and prolonged muscle activations, provide

richer spatiotemporal information for neural decoding than

twitches, which are discrete and brief. Conversely, the unique

spatiotemporal features of twitches make them better suited

than wake movements for developing and refining sensorimotor

A B

C D

Figure 4. Transplanting M1’s encoding scheme between pups leads to successful decoding at P8 but not at P12

(A) Representation of the ‘‘model transplant’’ experiment. Pup A (‘‘donor’’; left) donates its encoding scheme to pup B (‘‘recipient’’; right). Thus, pup B’s M1 unit

activity (top row) is used to predict pup B’s forelimb displacement (black trace at bottom) using pup A’s encoding scheme.

(B) Representative traces of actual limb movement (top) compared with limb movements predicted by pup B’s (original) decoder model (middle) and limb

movement predicted by pup B’s (transplanted) decoder model (bottom) for P8 (left, blue lines) and P12 (right, green lines) rats.

(C) Mean (+SEM) decoder performance (measured as the ratio of the ‘‘transplant’’ r2 to the original r2, expressed as a percentage) for P8 (blue) and P12 (green)

rats. Asterisk denotes significantly better decoder performance after transplantation at P8 than at P12 (p < 0.05).

(D) Decoder performance (now on the x axis) is shown for each donor-recipient pair across 30 random shuffles. Black lines indicate the mean (±SEM) decoder

performance of the 30 random shuffles for each donor-recipient pair. Blue and green circles indicate decoder performance of the unshuffled models at P8 and

P12, respectively.
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circuits.32 Moreover, that twitches were not as reliably decoded

as wake movements at P12 does not suggest an end to their

functional significance. For example, in P20 rats, twitch-related

neural activity is implicated in the developmental emergence of

a cerebellar-dependent internal model of movement.27 To what

extent twitching contributes to other forms of plasticity in adults

remains an open question.33–35

The onset of continuous activity is associated withmore
unique M1 information
In adults, continuous activity is associated with complex func-

tions such as sparse coding28,36,37 and predictive coding.36,38,39

Continuous activity is also thought to enhance reafference by

providing contextual information related to behavior, cognition,

and cortical dynamics.40–42 Accordingly, one might expect

the emergence of continuous activity at P12 to immediately

sharpen reafference in M1. However, this was not the case

(see Figure 2B), suggesting that continuous activity per se

does not enhance reafference or lead to better neural decoding

outcomes.

Although continuous activity did not immediately enhance re-

afference at P12, it did correspond with an increase in the

uniqueness of information in M1. This increase in unique infor-

mation could be due, in part, to the developmental narrowing

of M1 receptive fields. At P8, M1 units respond across a range

of movement amplitudes, suggesting that M1 receptive fields

are broadly tuned to multiple forelimb muscles.6 This broad

tuning is no longer apparent at P12, suggesting a progression

toward the narrow receptive fields displayed by M1 units in

adulthood.43–45 Similar receptive-field narrowing has been

demonstrated in other cortical46,47 and subcortical48,49 areas

and is an activity-dependent process.50

If the increased continuous activity at P12 is accurately char-

acterized as noise, then that noise could function to promote a

process akin to ‘‘regularization.’’51 Regularization entails the

introduction of noise to a system to prevent overfitting (i.e., form-

ing inappropriately strong relationships too early in the learning

process). Regularization through noise is a conventional tech-

nique in the creation of robust computational networks.43,52,53

Accordingly, we propose that regularization contributes to

receptive-field narrowing by ensuring that connections between

M1 units and muscle fibers are only strengthened when they fire

together with high-temporal precision. Connections with less-

precise temporal relations (i.e., at the edges of the receptive

field) are weakened and pruned.

M1’s encoding scheme is more individualized at P12
We found that when the encoding scheme of one P8 rat was

‘‘transplanted’’ to another P8 rat, decoder performance was

significantly better than after a similar ‘‘transplant’’ between

P12 rats. In other words, M1’s encoding schemes at P12 are

more complex and more individualized than the schemes at P8.

Developing animals face the problem of matching cortical

connections to a moving target: their rapidly growing bodies.

Discontinuous activity may help to solve this problem before

P12, as nearly all M1 activity occurs in response to movement-

related reafference or external stimulation.6,8,54 This pattern of

activity maximizes the correlation between behavior and neural

activity. Similarly, before P12, a 10- to 20-Hz corticothalamic

rhythm—known as a spindle burst—amplifies reafference and

promotes the development of sensorimotor pathways.2,55–58

This strong association between limb movements and M1

activity is thought to strengthen early-developing M1 connec-

tions that serve as the foundation for later-emerging motor

control.6,21,54

Limitations of the study
One limitation of this study is that all analyses were performed on

pre-recorded (i.e., static) spike trains, and thus we were not able

to assess how M1’s encoding scheme dynamically responds to

perturbations of individual units or neural ensembles. Another

limitation is the exclusive focus on two ages surrounding the

transition to continuous activity in one cortical area. Future

work should expand the developmental approach to neural de-

coding introduced here to older ages and additional cortical

areas.

Conclusion
In adults, M1 contributes in many complex ways tomotor control

and motor learning.59–61 Also, M1 integrates information arising

from the other senses,62,63 neuromodulatory systems,64,65 and

behavior.40–42 Although little is known about the development

of these higher-order functions of M1, it is now clear that these

functions—like M1’s most basic motor capacities—rest upon

an early-developing sensory foundation. But even this early

‘‘sensory phase’’ of M1 development is protracted and complex:

it begins during the discontinuous period of M1 activity as gross

somatotopic relations are formed and, as shown here, is trans-

formed through the transition to continuous activity. Thus, the

present findings add new dimensions to our growing under-

standing of M1’s sensory development before it assumes its

more familiar role in motor control.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to, and will be fulfilled by, the lead contact, Dr. Mark Blumberg

(mark-blumberg@uiowa.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Timestamps of action potentials, twitches, wake movements, and sleep-wake transitions, as well as the position of the forelimb in

Cartesian coordinates are available for download on Github (https://github.com/rglanz/Glanz_et_al_2023) and Zenodo (https://

zenodo.org/record/8238644, https://doi.org/10.5281/zenodo.8238644). All custom software is available upon request. (Also see

https://github.com/KordingLab/Neural_Decoding for neural decoding software, and https://github.com/nmtimme/Neuroscience-

Information-Theory-Toolbox for information theory software.) Any additional information required to reanalyze the data reported in

this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All experiments were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory An-

imals (NIH Publication No. 80–23) and were approved by the Institutional Animal Care and Use Committee of the University of Iowa.

As described previously,6 the data used in this study were collected fromSprague-Dawley Norway rats (Rattus norvegicus) at P8–9

(hereafter P8; n = 8) and P12–13 (hereafter P12; n = 8). Equal numbers ofmales and females were used, and all subjects were selected

from different litters. See our previous report for additional information.

METHOD DETAILS

As described previously,6 high-speed (100 fps) video and M1 extracellular unit activity were collected from unanesthetized pups as

they cycled through sleep and wake. Forelimb displacement was tracked using DeepLabCut;66,67 discrete movements were identi-

fiedwith custom software and confirmed visually. Note that both twitches andwakemovements exhibited similar distributions of limb

displacement at P8 and P12 (see Figure 3A in Glanz et al., 2021).6 See our previous report for additional information related to sur-

geries, electrophysiological recordings, video data collection, histology, spike sorting, and determination of behavioral state and

forelimb movements.

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Sprague-Dawley Norway Rats Envigo RRID: RGD_10401918

Software and algorithms

MATLAB, version 2020b Mathworks RRID: SCR_001622

Python Programming Language,

version 3.8

Python Software Foundation RRID: SCR_008394

Tensorflow, version 2.9 Google RRID: SCR_016345

Adobe Illustrator Creative Cloud 2022 Adobe RRID: SCR_010279

SPSS 28 IBM RRID:SCR_019096

Other

Time-stamped sleep and movement data This paper https://github.com/rglanz/

Glanz_et_al_2023

https://zenodo.org/record/8238644
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data preparation
For all decoding procedures, M1 unit activity and forelimb displacement served as the predictor and target variables, respectively.

Both variables were binned in 20-ms increments. Forelimb displacement was calculated as the absolute value of zero-centered limb

position along the x-, y-, and z-dimensions and was smoothed using a 20-ms half-width Gaussian kernel.

To prevent model overfitting, the 1-h recordings were split into training (36 min; 60%) and testing (9 min; 15%) datasets that were

used, respectively, to train and test model parameters for best performance. To ensure an unbiased final assessment of decoder

performance,25 a validation dataset (15 min; 25%) was held back until the final model parameters were established; the validation

dataset was used for the results reported here. For a tutorial on similar neural decoding procedures, see Glaser et al.25

Data scaling
M1 activity was z-scored prior to decoding. The scaling factors (mean and standard deviation) were calculated using only the training

dataset to avoid data leakage (i.e., positive bias in performance estimates due to information from the testing dataset leaking into the

training dataset).68 Forelimb position was normalized before decoding. The scaling factors (minimum and maximum) were again

calculated using only the training dataset to avoid data leakage.

Linear model
The linear model was composed of a single-layer Tensorflow model69 with no hidden layer or activation function. This design

forms a linear perceptron70 and is equivalent to an ordinary least-squares (i.e., linear) regression. All models were assembled

in Keras, a software package that assists in building Tensorflow models.71 A neural-network approach was selected instead

of a standard linear regression (which guarantees an optimal result) to match our nonlinear analyses. Using a standard linear

regression did not meaningfully improve decoder performance (average r2 improvement of 0.03). Finally, a 240-ms time window

surrounding each timepoint was flattened (i.e., crossed with the feature of individual units) to provide additional temporal context

to the model.

The decoder’s learning parameters were as follows: Mean-square error was selected as the loss function (i.e., a function used to

determine the error between the real limb displacement and the predicted limb displacement). Adam72 was selected as an optimizer

(i.e., an algorithm that updates the internal parameters of the model across training iterations). The learning rate (i.e., the degree to

which the internal parameters are updated) was set to 0.001 arbitrary units, which is the default learning rate for Adam in the Keras

package. We tested a variety of different combinations of loss functions, optimizers, and learning rates without observing ameaning-

ful impact on decoder performance (average r2 improvement of 0.02).

The model was allowed to train until the test loss function stopped decreasing, which typically occurred after 3–5 iterations. For

each time bin, the decoder model predicted three target variables corresponding to x-, y-, and z-displacement of the forelimb. Before

comparing predicted with actual limb displacements, the three predicted displacement variables were combined into a single var-

iable using the Pythagorean theorem:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2+y2+z2

p
(Equation 1)

Finally, we note that decoder performance was similar when each of the three dimensions was analyzed independently (average r2

improvement of 0.02).

Nonlinear model
Several nonlinear models were compared before choosing a long-short-term memory (LSTM) neural network.26 The LSTM model

was chosen for its superior performance on the current dataset and its successful application in similar neural decoding applica-

tions.25,73,74 Like all models with many parameters, LSTMs are sensitive to initialization parameters and are prone to overfitting.

We addressed these limitations by repeatedly randomizing the initialization parameters and by performing all analyses on a held-

out validation dataset.

The number of nodes in the input layer was identical to the number of units in each specific M1 recording (i.e., 14–38 nodes).

Models with a larger numbers of nodes were tested (up to 500) but resulted in only minor improvements in decoder performance

(average r2 improvement of 0.02). A 240-ms timewindow, similar to that used for the linear model, was included as themodel’s recur-

rent (i.e., time-based) feature.

To further prevent overfitting, a penalty was added to the recurrent dimension of themodel to prevent rapid changes to themodel’s

internal parameters across training iterations. The penalty selected was L2 (ridge regression75):

l$kbk (Equation 2)

where l, which represents the magnitude of the penalty, was set to 0.001 arbitrary units.

The optimizer, learning rate, and loss function were identical to the linear model. The nonlinear model was also allowed to run until

the test loss stopped decreasing (typically within 3–5 iterations). Similar to the linear model, three independent predictions (x-, y-. and

Cell Reports 42, 113119, September 26, 2023 11

Report
ll

OPEN ACCESS



z-displacement) were made for each time bin and reduced to a single variable using the Pythagorean theorem (Equation 1), after

which predicted and actual limb displacements were compared.

Decoder performance
Decoder performance was evaluated using the square of the Pearson correlation coefficient (r2) with actual (x) and predicted (y) limb

displacement as the two variables:

r2 =

0
B@

Pðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � xÞ2 P ðyi � yÞ2
q

1
CA

2

(Equation 3)

In typical neural decoding applications, regression performance is measured using the Coefficient of Determination (R2)

R2 = 1 �
P ðyi � xiÞ2P ðxi � xÞ2 (Equation 4)

which is sensitive to the scale of the errors. The scale-invariant definition of model performance used here (Equation 3) solves the

‘‘intermittent demand’’ problem.76 Briefly, because the limb’s displacement is near zero (i.e., at rest) across the vast majority of

sampled time points, R2 disproportionately rewards predictions equal to the mean limb displacement and punishes predictions

that vary from baseline, which is not the case with r2.

Model lesion experiments
Two ‘‘lesion’’ experiments were performed in which individual M1 units or action potentials (spikes) were randomly selected to be

removed from the decoding process. A given percentage of units or spikes, over a range from 0% to 90% (in increments of 10%),

was randomly selected and removedwithout replacement using theNumPy software package in Python.77 The resulting units or spike

trains were then used as the predictor variable and entered into the decoder model that was trained on the ‘‘intact’’ dataset. The per-

formanceof thedecodingmodel after a lesionwascalculated as the ratio of the lesion r2 to the intact r2, converted to apercentage. The

randomization procedure was repeated ten times and the ten r2 values were averaged for each pup before statistical comparison.

Mutual information
Mutual information between a target unit (X0) and a subset of predictor units ({Xk}) of size k was defined as:

IðX0; fXk

�Þ = SðX0Þ � SðX0

�� fXk

�Þ (Equation 5)

where IðX0; fXkgÞ represents the linear mutual information regarding the response of a target unit and of a subset of units78–80 to a

particular movement. This is equivalent to the entropy of the target unit (SðX0Þ) minus the entropy of the target unit explained by

the subset (SðX0

�� fXkgÞÞ. Mutual information was then calculated.81 Random subsets of units were randomly selected from all

possible combinations (10 selections per subset of size k).

Model transplant experiment
To test the interchangeability of decoder models between pups of a particular age, a ‘‘model transplant’’ experiment was performed.

The M1 activity (predictor variable) of an individual rat (the ‘‘recipient’’) was used to predict forelimb displacement using the model

weights from a different but same-aged pup (the ‘‘donor’’). Two pups of the same age were paired when the recipient had at least the

same number of M1 units as the donor. The two animals’ units were then matched by descending firing rate. Any excess units from

the recipient pupwere discarded from the analysis. In total, 29 such donor-recipient pairs were selected for both P8 and P12 animals.

To test whether firing-rate sorting introduced bias, the experiment was repeated 30 times with random unit-unit pairings. The per-

formance of the ‘‘model transplant’’ was measured as the ratio of the transplanted r2 (recipient3 donor) to the original r2 (recipient3

recipient).

Statistical analyses
Before statistical analysis, all data were tested for normality using the Shapiro-Wilk test, for equal variance using Levene’s test (for

between-subjects variables), and for sphericity using Mauchly’s test (for within-subjects variables with >2 groups). For analyses in

which the variance between groups was not equal, a pooled error term was not used when generating simple main effects and

post-hoc tests. For analyses in which sphericity was violated, a Huynh-Feldt correction was applied to the degrees of freedom.

All r2 values were arc-sin transformed before analysis. The mean and standard error of the mean (SEM) were used throughout as

measures of central tendency and dispersion, respectively.

All analyses were performed as independent t tests or two-way mixed-design ANOVAs. Simple main effects were only tested if the

interaction term was significant. In all two-way ANOVAs, an adjusted partial eta-squared was used as an estimate of effect size that

corrects for positive bias due to sampling variability.82 For t tests, an adjusted eta-squared estimate of effect size was reported.
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Figure S1. Decoder performance for twitches and wake movements.

(A) From left to right, actual forelimb displacement (black lines) and predicted forelimb displacement (blue lines) for a 
single representative twitch at five levels of decoder performance (from weak to strong). (B) Left: Plot depicting the 
percentage of twitches above a particular threshold of decoder performance (x-axis) for P8 (blue lines) and P12 (green 
lines) rats. Dashed and solid lines represent linear and nonlinear decoder performance, respectively. Right: Same as 
left, but for wake movements. (C) Same as Figure 2B, but after decoding was performed separately for sleep and wake 
periods. Note that the linear decoding of wake movements at P12 was more accurate than in Figure 2B, likely due to 
the discarding of sleep-related variance from this decoding process. Brackets denote a significant interaction between 
age and decoder (p < .05). Asterisks denote significantly better performance of the linear decoder at P8 compared to 
P12 (p < .05).
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