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Highlights
Researchers routinely use motor
behaviors (e.g., eye, face, and limb
movements) to index cognition in the
human neonate.

Whendevelopmental researchers use in-
fant movements to index cognition, they
often assume that the cortex is involved
in producing the behavior.

However, cortical control of movement
is absent at birth, emerging gradually
Mark S. Blumberg 1,2,3,* and Karen E. Adolph4,*

Cognition in preverbal human infants must be inferred from overt motor behav-
iors such as gaze shifts, head turns, or reaching for objects. However, infant
mammals – including human infants – show protracted postnatal development
of cortical motor outflow. Cortical control of eye, face, head, and limb move-
ments is absent at birth and slowly emerges over the first postnatal year and be-
yond. Accordingly, the neonatal cortex in humans cannot generate the motor
behaviors routinely used to support inferences about infants’ cognitive abilities,
and thus claims of developmental continuity between infant and adult cognition
are suspect. Recognition of the protracted development of motor cortex should
temper rich interpretations of infant cognition andmotivate more serious consid-
eration of the role of subcortical mechanisms in early cognitive development.
over the first several postnatal months
and beyond; before cortical outflow
emerges, brainstem networks produce
complex motor behavior.

Thus, cortical control of the motor be-
haviors used to infer cognition in neo-
nates is not neurobiologically plausible.

Researchers should be cautious when
making claims about developmental
continuity between newborn and adult
cognition (i.e., ‘core knowledge’) and its
supporting neural architecture.
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Motor behavior as a window on cognition
It is said that our eyes reveal our thoughts, but the same can be said of any movement. Accord-
ingly, researchers routinely use infant eye and head movements, facial expressions, reaching be-
haviors, and locomotion to infer what is happening in the infant’s mind – knowledge, emotions,
morals, and goals (e.g., [1–4]). When researchers couple inferences about infant cognition with
the assumption that the cognitive processes are instantiated in the cerebral cortex, they must
also conclude that the infant cortex is the source of motor outflow that crystallizes cognition in
movement (Figure 1A).

But what if this conclusion is wrong? Here, we present evidence that the cortical capacity for
adult-like motor control is absent in newborns and only begins to emerge around 3 to 6 months
of age. Of course, like adults, newborns can move all their body parts, including the eyes, face,
head, torso, limbs, and fingers. But in adults, cortical control of movement is fully developed
and functionally integrated, whereas in newborns it is not. In newborns, the brainstem produces
movements throughout the body, and there is no evidence that the cortex ‘speaks’ to the
brainstem so as to influence motor behaviors. The initial absence of cortical motor outflow argues
against theories about the developmental and neurobiological continuity of infant cognition, such
that infants possess the same ‘core knowledge’ present in adults. Specifically, if the cortex does
not organize and execute newborn motor behaviors, and if cortical motor outflow only emerges
gradually over the first 6 months and beyond, then either knowledge, emotions, morals, goals,
and the like are produced subcortically (and thus are not developmentally continuous with adult
cognition) or the behavioral indices of early infant cognition are unreliable. Something's gotta give.

Note that absence of cortical motor outflow does not mean that the neonatal cortex lies dormant,
awaiting the opportunity to ‘turn on’ or ‘come online’. The quantity and patterning of early cortical
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Figure 1. The implications of protracted development of cortical motor outflow for neonatal cognition. (A) The assumption of cortical motor outflow is central to
inferences about cortically mediated cognition, especially for claims of developmental continuity between infant and adult cognition. Bottom unbroken arrow: Researchers
use overt motor behavior to draw inferences about complex cognition in young, preverbal infants. Top broken arrow: Cortically mediated cognition, in turn, can only be
expressed as motor behavior if cortical motor outflow exists. Without cortical motor outflow, infant behavior must be mediated subcortically, and thus claims that infant
cognition is developmentally continuous are suspect. Indeed, cortical motor outflow is absent in early postnatal development. Photo of infant courtesy of Jaya
Rachwani. (B) Highly simplified diagram of motor outflow to the limb and facial muscles and associated sensory feedback (reafference) across early development.
(a) Initially, newborn limb and facial movements are produced by brainstem motor systems (unbroken red lines). (b) Reafference is conveyed to the brainstem and
somatosensory regions in thalamus and cortex (green lines). (c) Later in development, cortical motor outflow produces movement via the corticospinal and
corticobulbar tracts and also modulates brainstem motor networks (broken blue lines). In addition, other cortical regions develop the ability to influence cortical motor
outflow. A similar developmental trajectory exists for cortical control of eye movements.
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activity are incompatible with such a notion [5–9] (Box 1). Thus, before the emergence of motor
outflow, the cortex receives abundant sensory and nonsensory input that lays the foundation
for the development of the cortical specializations and functionally integrated cortical-
subcortical networks that will support later-developing cognition and behavior.

Development of cortical control of body movements is protracted
Primary motor cortex (M1) gets its name from its unambiguous role in adult motor control: M1
neurons fire before self-generated movement, and electrical stimulation of M1 produces both
simple and complex movements [10,11]. As shown in Figure 1B, M1 is a major source of the
corticospinal tract that projects directly to spinal motor neurons controlling muscles of the
234 Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3
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Box 1. The surprising sensory origins of primary motor cortex

If primary motor cortex (M1) does not contribute significantly to motor control during much of early development, what is it
doing? Long before M1 plays any role in motor control, neural recordings in rat pups show that M1 initially functions like a
prototypical sensory structure [91,92]. For example, during rapid eye movement (or active) sleep, the brainstem in P8 rats
generates hundreds of thousands of brief and discrete limb and whisker twitches daily. Twitches trigger pulses of proprio-
ceptive feedback that, in turn, initiate a cascade of neural activity throughout the sensorimotor system, including primary
somatosensory cortex (S1) and M1 [93]. Even in P20 rats, which is near the time of weaning, neurons in the forelimb region
ofM1 respond exclusively to sensory feedback from sleep- andwake-relatedmovements [9] (Figure I). Such findings suggest
that the early-developing and topographically organized sensory map in M1 lays the foundation for its later-developingmotor
map. The findings also counsel against assuming that the function of a developing cortical structure corresponds in an
obvious way with its function in adults.
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Figure I. Sensory origins of primary motor cortex (M1). (A) Boundaries of primary cortical areas in rats: primary
somatosensory cortex (S1, red) and M1 (blue), and primary auditory (A1) and visual (V1) cortex. (B) Enlargements of red
and blue regions in (A) show the somatotopic organization of S1 and M1. Adapted, with permission, from [92].
(C) Perievent histogram showing sensory responsiveness of an individual neuron in the forelimb region of M1 at P20.
The neuron’s firing rate is shown in relation to movement onset (vertical broken line) for twitches (red) and wake
movements (black). This neuron is representative of all M1 neurons recorded at this age. Neurons fire above baseline (0
on the y-axis) after – not before –movement onset during both sleep andwake, indicative of sensory responding. Adapted,
with permission, from [9].
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limbs and trunk [12], and the corticobulbar tract that projects to cranial nerves controllingmuscles
of the face, jaw, and tongue [13] (but not the eyes; see next section). The corticospinal tract also
projects to motor structures in the brainstem that, in turn, project to the spinal cord.

In human newborns and the young of other mammalian species, M1 and its descending projections
do not exhibit the signature anatomical and functional characteristics with which they are associated
in adults [14,15]. Development of these motor systems entails the initial establishment of anatomical
connections between cortical axons and brainstem and spinal motor neurons, refinement of estab-
lished connections, myelination, and formation of topographically precisemotor maps [15]. Critically,
anatomical evidence of cortical connectivity with downstream targets does not necessarily mean
that these connections contribute to behavior. For example, within a few days after birth in rats,
M1 has established direct corticospinal connections with spinal motor neurons; nonetheless, M1
does not assumemotor functions until at least 3weeks later [16,17]. In anesthetized rats at postnatal
day (P) 25, electrical microstimulation in M1 produces only the simplest forelimb movements
(e.g., wrist extension) (Figure 2A); by P30, more complex forelimb movements are produced
(e.g., grasping), and movement complexity continues to increase through P60 (i.e., adulthood).

If M1 is only beginning to contribute to behavior at P25 in rats, what does it do before then? Despite its
name, M1 initially functions exclusively as a sensory structure (Box 1). Moreover, M1’s early-
developing sensory map is somatotopically aligned with its later-developing motor map, which
Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3 235
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Figure 2. Protracted development of motor maps in M1. (A) Representative motor maps in rat pups at postnatal day (P) 25 and P30 and in adult rats at P60. Each
map was produced using intracortical microstimulation in the forelimb region of M1 in anesthetized animals. The legends indicate the simple (i.e., single joint) and complex
(i.e., multijoint) movements evoked at each stimulation site. Rectangles around the maps demarcate identical cortical surface areas. Adapted, with permission, from [17].
(B) Representative motor maps in kittens at P63 and P86 and in adult cats. Each map was produced using intracortical microstimulation in the forelimb region of M1 in
anesthetized animals. The legend indicates the single-joint forelimb movements (shoulder, elbow, wrist) and multijoint movements evoked at each stimulation site. Move-
ments of the digits occurredwithmovements of other joints. Colors denote the threshold electric current for movement production as indicated by the color bar at right. The
black lines show the location of the cruciate sulcus. Adapted, with permission, from [24]. Both figure parts are used with permission of the American Physiological Society;
permission conveyed through Copyright Clearance, Inc.
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means that the former lays the foundation for the latter. Thus, developmental changes inM1 powerfully
illustrate that cortical activity – even task-relevant cortical activity – occurring contemporaneously with a
movement does not imply that the cortex plays a causal role in the production of that movement.

The inability of M1 in infant rats to produce movement contrasts with subcortical motor structures.
For example, in 1-week-old rats, neurons in the red nucleus – a midbrain motor nucleus – increase
their activity before the onset of a forelimbmovement, and,moreover, stimulation of the red nucleus
evokes movements [18,19]. Thus, through at least the first 3–4 postnatal weeks in rats, brainstem
networks are sufficient to support complex postural and locomotor skills [20,21] (Box 2).
236 Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3
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Box 2. Brainstem networks produce complex behavior

Given the limited motor capabilities of the cerebral cortex in early development, the question naturally arises whether subcor-
tical structures are sufficient to produce complex motor behavior. Here, we consider one midbrain structure – the superior
colliculus – that integrates multisensory input and produces complex behavior in mammals and other vertebrates [94].

The superior colliculus, which forms the roof of the midbrain, is closely associated with many aspects of functioning in the
visual system. It receives direct and prominent input from the retina and projects to oculomotor nuclei (to influence sac-
cadic eye movements) and the pulvinar (a thalamic nucleus dedicated to visual processing). The superior colliculus also
processes and integrates multimodal sensory input from the visual, auditory, and somatosensory systems [95] and is im-
plicated in a subcortical network that supports facial recognition in human infants [55] and adult monkeys [96].

Beyond eye movements, the superior colliculus can produce a wide variety of motor behaviors [97,98]. For example, ac-
tivation of the superior colliculus in adult rats andmice elicits orienting responses and defensive reactions, including pursuit
of moving objects. In adult monkeys, stimulation of the superior colliculus produces defensive behaviors, eye-head gaze
shifts, and reaching movements. In adult humans, fMRI shows increased neural activity in the superior colliculus while
reaching to visual targets [99].

Thus, based on evidence across multiple species, the superior colliculus can produce complex behaviors, even behaviors
often assumed to require cortical involvement. But are these functions of the superior colliculus available to the young animal?
Anatomical and functional evidence in newborn kittens suggests that they are [100]. For example, by 2 days of age, electrical
stimulation of the superior colliculus evokes saccadic eye movements and movements of kittens’ limbs, neck, whiskers, and
pinnae [101]; the system exhibits several features resembling those in adults (e.g., topographic organization), with less devel-
oped features achieving adult-like characteristics by 6 to 8 weeks, long before M1 has achieved adult-like function [24].

Trends in Cognitive Sciences
Relative to human newborns, rats are extremely immature at birth, but cats are born nearly as ma-
ture as humans [22]. Nonetheless, like rat pups, kittens show protractedM1 development [23]. Be-
fore P60 in kittens, electrical microstimulation in M1 produces movements at only 5% of electrode
sites; adult-like levels (~67% of sites) are not achieved until P81–P90 – several weeks after weaning
[24]. Along with these changes in stimulation efficacy, the threshold of activation decreases and the
representation of the forelimb expands in its motor map (Figure 2B). Finally, as in rat pups,
corticospinal connections are established in kittens long before M1 influences movement.

The findings in rats and cats tell a similar story about protracted M1 development. But are the
findings relevant for human infants, who, many assume, have more complex brains and develop-
mental timelines? Assumptions about human exceptionalism should be met with skepticism [25].
Indeed, in a detailed analysis of 271 developmental events across 18 mammals – including rats,
cats, and humans – a single model is sufficient to predict the timing of all events with great accu-
racy [22]. The ordering of the 271 events, which includes measures of brain growth, synaptogen-
esis, myelination, eye opening, and walk onset, was conserved across species, with the relative
timing of events showing the most between-species variability. In other words, the order of devel-
opmental events is similar in rats, cats, and humans, but the timing varies from days in rats to
weeks in cats to months in humans; thus, the first evidence of cortical motor outflow begins
around P25 in rats, P81–P90 in cats, and 3–6 months in humans.

In human fetuses, corticospinal axons first reach the cervical spinal cord by 24 weeks postcon-
ception, and activation of M1 neurons using transcranial magnetic stimulation elicits movements
in preterm and full-term newborns [26–28]. However, as in rats and cats, the onset in humans of
anatomical or functional connectivity does not constitute evidence that M1 contributes to motor
behavior [15,29].

In humans, compelling evidence of limited cortical motor outflow comes from infants who in-
curred brain damage from perinatal stroke, the leading cause of cerebral palsy [30–33]. In con-
trast to the immediate and often devastating paralysis that follows cortical stroke in adults,
Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3 237
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similar strokes around birth do not produce immediate paralysis or any other detectable motor
disability. In fact, the disabling effects of cerebral palsy typically do not appear until at least
6 months after birth [34,35].

Microstimulation studies, such as those performed in rat pups and kittens (Figure 2), cannot be
performed in human infants to assess the development of cortical motor maps. Instead, re-
searchers rely on neural imaging, such as functional near-IR spectroscopy (fNIRS). For example,
fNIRS shows diffuse, rather than topographically precise, M1motor maps as human infants reach
for an object or step on a motorized treadmill [36]. When reaching at 6 months, M1 activation pat-
terns are diffusely organized (i.e., not topographically precise); activation at 12 months is less dif-
fuse, but still more diffuse than in adults. During stepping, M1 activity at 6 and 12 months is as
diffuse as that of 6-month-olds during reaching. As with rat pups and kittens, the absence in
human infants of topographically precise motor maps provides converging evidence of
protracted development of cortical motor outflow.

In summary, rats, cats, and humans show protracted M1 development. Initially, M1 is incapable of
producing movement. When motor outflow from M1 begins to emerge, activation thresholds are
high and motor maps are not yet organized. In contrast, long before (and after) the emergence of
cortical motor outflow, brainstem networks can organize and implement complex motor behaviors.

Development of cortical control of eye movements is also protracted
When human adults respond to visual stimuli, a synergistic network of cortical and subcortical
structures supports saccadic and pursuit eye movements [37–40]. Visual input is conveyed se-
quentially from primary visual cortex (V1) to the parietal eye field and then to the frontal eye field,
a region in the frontal cortex that abuts M1; the frontal eye field also receives input from the dorso-
lateral prefrontal cortex (PFC). Accordingly, the frontal eye field integrates visuospatial information,
short-term spatial memory, and decision processes, and it sends projections to the superior
colliculus, whose neurons project to the oculomotor nuclei. Other cortical regions involved in visual
processing, including the parietal eye field and V1, also project to the superior colliculus.

In human newborns, the components required for the cortical control of eye movements are not
yet established. In addition to the substantial postnatal development of V1 itself [41–43], horizon-
tal connections from the output layers in V1 to secondary visual cortex do not appear to develop
until after 4 months of age [43], suggesting that V1 cannot yet influence eye movements via the
parietal eye field, the frontal eye field, or the dorsolateral PFC. Furthermore, the white matter tracts
that connect parietal cortex with the frontal eye field and dorsolateral PFC are not evident until 3 or
more months of age [44,45]. In fact, one of these tracts – the superior longitudinal fasciculus – is
among the slowest-developing tracts in the infant brain.

Developmental analyses of the event-related spike potential in parietal cortex provide converging
electrophysiological evidence for the protracted development of V1’s ability to influence the
downstream structures that control eye movements. In adults, this spike potential reliably
precedes the onset of planned saccadic eye movements. But this spike potential is absent in
6-month-olds, and its amplitude is not yet adult-like even in 12-month-olds [46]. Moreover, the
development of covert visual attention further supports the notion that control of eye movements
by cortical structures downstream of V1 emerges between 3 and 6 months of age [47–49].

The process by which infants learn to reach for objects provides additional evidence that the ability
to convey visual information to downstream structures is developmentally protracted. In human
adults, reaches and grasps are mediated by separate cortical pathways, both of which begin in
238 Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3
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visual cortex and terminate in M1 [50]. Infants’ first successful reaches (defined as arm extensions
that result in contact with the object) appear at approximately 3 months of age under the guidance
of proprioceptive (not visual) feedback [51]. Visually guided reaching develops over the next
2 months [52], consistent with the emergence of horizontal connections from V1 to downstream
structures [43]. The ability to actually grasp an object develops even later [53].

With minimal or absent cortical contributions to eye movements in the early postnatal period,
subcortical structures must be responsible for organizing and implementing functional
visuomotor behavior [41,47,54] (Box 2). However, we stress again that the absence of cor-
tical participation in the control of movement does not imply that the cortex does nothing:
Even at early ages, the cortex receives and processes modality- and task-specific input. Ac-
cordingly, as Johnson [55] put it, ‘[the] activation of visual cortical areas in the first months
might have little influence over the visually guided behaviour of the infant’ (p. 770). Why
might such visual cortical activity occur when it cannot influence behavior? Likely reasons in-
clude the development and maintenance of local neural circuits and the interdigitation of
functionally related cortical and subcortical networks. Indeed, Johnson [55] argued that new-
born looking preferences in face-detection tasks are initially supported by a subcortical foun-
dation upon which later-developing cortical mechanisms – including those in the specialized
fusiform face area – are built.

Implications of protracted cortical motor outflow for claims about cognitive
development
Delayed onset of cortical motor outflow sets neurobiological constraints on what can plausi-
bly support cognition in early human infancy. Assessments of plausibility are on a continuum
that varies with infant age. Given that cortical motor outflow is absent in newborns, claims
about newborn cognition that assume cortical processing should be met with skepticism.
But as cortical motor outflow gradually emerges over the first postnatal year, such claims be-
come increasingly plausible. That is, extraordinary claims about cognitive capacities in new-
borns might be quite ordinary when applied to 1-year-olds. Bottom line: Either the motor
behaviors used to index infant cognition are unreliable or the behaviors are produced
subcortically (Figure 1). Either way, given the limitations inherent in current methods, the avail-
able evidence does not support claims of developmental continuity between early infant and
adult cognition.

The examples outlined below illustrate how neurobiological plausibility can inform inferences
about infant cognition based on motor behavior.

Newborn orientation discrimination
In the 1980s, some developmental psychologists were convinced that the visual cortex is
necessary for newborn visual discrimination. These researchers considered claims to the
contrary (i.e., that visual processing in the brainstem is sufficient) as ‘doomed to founder on
the rocks of a stubborn neonate who refuses to be relegated to the status of an involuntary,
passive reactor’ ([56], p. 13). To demonstrate the necessity of the visual cortex, researchers
chose a task – discriminating lines at different orientations – that requires engagement of
orientation-selective neurons that, as assumed by some researchers at the time, exist only in
the visual cortex [57]. Newborns were visually habituated to bars oriented at 45°, meaning
that infants looked repeatedly at the display before turning their eyes and head away due to
‘boredom’. Then, when tested with bars oriented at 135°, newborns dishabituated to the
new line orientation (i.e., they showed a recovery in looking time to the display), suggesting
that their eye and head movements depended on cortical discrimination.
Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3 239
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But if cortical control of eye and headmovements is unavailable to newborns, where does that leave
the assumption that the cortex is necessary for orientation-specific discrimination? In fact, based on
visually evoked potentials, orientation selectivity in visual cortex begins around 6 weeks of age, sug-
gesting that vision relies on subcortical mechanisms at younger ages [58]. Moreover, it turns out that
orientation-selective neurons are not exclusive to cortex: Such neurons exist at other locations in the
visual system, including the superior colliculus and even the retina [59].

Neonatal imitation
For decades, researchers have argued passionately about whether human neonates can imitate
facial expressions – stick out their tongue, for example, after seeing an adult do the same
[60–62]. Some labs find behavioral evidence of neonatal imitation, but others do not [63]. Why
the controversy? One reason is that imitation is not trivial for a newborn: It requires the conversion
of a visual stimulus into a sensory representation in body space followed by the production of a
complementary motor response. None of this is easy for newborns, given their poor visual acuity
and limited experience linking visual, proprioceptive, and motor systems.

Controversy aside, some researchers propose cortical maps as contributors to neonatal imitation
[64]. For cortical maps to support an imitative act such as tongue protrusion – the behavior most
reliably associated with neonatal imitation – neurons in V1 must activate neurons in motor cortex,
resulting in the transmission of motor signals via the corticobulbar tract to the tonguemuscles that
produce protrusion. But such long-range horizontal connections from V1 are not available to the
newborn [43]. Moreover, some researchers go further and invoke cortical mirror neurons to ex-
plain newborns’ purported imitative abilities [65]. This last claim requires functional motor outflow
from the neonatal motor cortex and functional outflow from mirror neurons to motor cortex. Evi-
dence for neither exists.

In fact, cortical control of the tongue exhibits protracted development, and tongue protrusion
(and retraction) in infants is connected in complex ways with the development of suckling,
breathing, swallowing, and eating solid food [66]. Moreover, tongue protrusion is initially pro-
duced spontaneously, showing its highest spontaneous rates at birth before declining over
the next 3 months [67].

Thus, consideration of cortical motor outflow further supports the notion that neonatal imitation is
not the same sort of imitation produced by older children and adults [61,62]. Accordingly, to ex-
plain neonatal imitation, researchers should look to subcortical structures, including the superior
colliculus [66] (Box 2). As with face processing in newborns [55], an appeal to subcortical mech-
anisms does not make a phenomenon less interesting. Rather, such an appeal simply points to
more plausible neurobiological mechanisms.

Neonatal ‘crawling’ in response to speech
Newborn arm and leg movements are grossly uncoordinated compared with the limb move-
ments required for crawling, cruising, and walking in older infants [68]. The spinal cord, which
contains the complex circuitry to enable precisely timed limb alternation in vertebrates [69], has
received the bulk of attention from researchers focused on the neural basis of locomotion across
human development [70,71]. However, some researchers asked whether supraspinal mecha-
nisms can modulate newborn limb movements by assessing behavioral responses to visual
[72] or auditory [73] stimuli. For example, using a mini-skateboard designed to enable newborns
to move their arms and legs in a prone posture, researchers found that newborns born to French
mothers moved more in response to French speech than to English [73]. Because the re-
searchers discounted the ability of brainstem mechanisms to discriminate French from English,
240 Trends in Cognitive Sciences, March 2023, Vol. 27, No. 3
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they concluded that ‘typically developing newborns possess cortical networks ready to recognize
their native language’ (p. 4).

However, if cortical motor outflow is not available to support the observed movements, neonates
must use subcortical mechanisms to discriminate French from English and convert that discrim-
ination into movement. In fact, speech stimuli, including phonemes, are differentially processed
within the brainstem [74]. Thus, it is plausible that neonates can discriminate native and non-
native speech using subcortical mechanisms alone. Or, it is possible that the neonatal limbmove-
ments were overinterpreted: Indeed, the researchers failed to replicate the effect in newborns
born to English-speaking mothers.

Numerosity in 3-month-olds
To investigate newborn perception of abstract number, researchers used a cross-modal
matching task in which infants were familiarized to auditory stimuli composed of the
same syllables repeated four or 12 times [75]. Then infants were tested with visual arrays
composed of four or 12 objects. Infants familiarized to four syllables looked longer at the
array of four objects, and infants familiarized to 12 syllables looked longer at the array of
12 objects, suggestive of ‘abstract numerical representations at the start of human life’
(p. 10384).

In human children and adults, and in non-human animals, the intraparietal cortex is involved in the
perception of numerosity [75]. Because 3-month-olds activate this area of the cortex when de-
tecting a change in the number of objects in a visual array [76], researchers suggested that
‘this parietal sensitivity arises from a predisposition of parietal cortex for spatial and numerical
transformations, possibly present since birth’ (p. 275). However, it is neurobiologically implausible
that intraparietal cortex contributes to the behavioral expression of numerosity in 3-month-olds,
let alone since birth. But if intraparietal cortex is not involved in the looking behavior in this task,
how can its early activation be explained when 3-month-olds detect a change in the number of
objects in a visual array? One possibility is that this early activation reflects feedforward input
from the subcortical structures responsible for the behavior, similar to what was proposed for
the early development of face perception [55].

Social evaluations in 3-month-olds
Adults routinely evaluate other people’s proclivities to help or to harm. But do babies? For example,
after watching a ‘helper’ character (a geometric shape with eyes) ‘assist’ another character up a hill
and a ‘hinderer’ character ‘thwart’ the other character’s efforts to go up the hill, 6- and 10-month-old
infants reached more frequently for the helper character [77], leading the authors to conclude that
this preference ‘may serve as the foundation for moral thought and action’ (p. 557). These findings
were subsequently extended to 3-month-olds using preferential looking, in which infants turn their
eyes and head to look at a display [78].

Can we conclude that 3-month-olds have an ‘innate moral core’ [3]? The answer to this
question depends on whether 3-month-olds can make social evaluations – presumably
dependent on cortical structures – and then use those evaluations to execute the required
eye movements. Given that cortical mechanisms for controlling motor behavior are un-
available to 3-month-olds, two other possibilities must be considered: either that infants’
social evaluations are enabled initially by subcortical structures (and are thus not con-
tinuous with those of adults) or that concerns about whether the findings truly reflect
social evaluation – as opposed to low-level perceptual discrimination – should be given more
credence [79].
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Outstanding questions
Can the developmental onset of cortical
control of the limbs (via M1) and eyes
(via frontal and parietal eye fields) be
established with greater precision in
human infants? To gain adequate
spatial and temporal resolution to
address this question, multimodal
imaging should be used. For
example, by combining fMRI
with electroencephalography or
magnetoencephalography (MEG),
it should be possible to assess more
precisely the temporal relations between
brain activity and behavior.

Can high-density fNIRS with frequent
sampling across the first postnatal
year provide more detailed and precise
assessments of the developmental
emergence of motor maps in M1?
Such information is needed to better
understand the increasing contribu-
tions of M1 to behavior across age.

Which subcortical structures are
involved in the earliest behaviors of
human infants? What are the temporal
relations in the activity of subcortical
and cortical structures? Answering
these questions will require tools
(e.g., MEG) that can record deep-brain
and cortical activity with sufficient tem-
poral precision.
High-level infant cognition
The PFC is a computationally complex network implicated in high-level cognitive processes, such
as working memory, decision-making, and motor planning [80]. Given the centrality of the PFC for
human cognition, researchers asked when and under what conditions the PFC first develops its
functional capabilities [81–83]. For example, using a task that taps into the ability to ‘hold a goal
in mind’when an object is no longer visually accessible, researchers showed that the performance
of human infants improves substantially from 7.5 to 12months of age [84]. Indeed, performance at
12 months of age was similar to that of adult rhesus monkeys, and the performance of monkeys
with lesions of the dorsolateral PFC was similar to that of human infants at 7.5 to 9 months of
age. Additional support for protracted PFC development comes from consideration of that struc-
ture’s functional codependence with the cerebellum, which is also a late-developing structure
[85–87].

In contrast, other researchers argue that the PFC contributes to higher-order cognition at
birth, enabling newborns to make active choices about where they direct their attention
and how they experience the world [88]. Noting the newborn’s limited ability to reach,
grasp, and point, the researchers claim that the cognitive contributions of the PFC are evi-
denced by infants' ‘control over their gaze and visual attention from the first hours after
birth’ (p. 251). To the contrary, there is no evidence that the newborn PFC can influence
visuomotor behavior.

Finally, to further support claims about a functional newborn PFC, researchers point to neu-
roimaging evidence of an adult-like frontoparietal network in human infants before 1 month of
age [89]. But again, evidence of early complex organization does not bear on the network’s
ability to produce behavior. Indeed, it is more likely that subcortical mechanisms provide
structured input to the newborn PFC long before it can actively contribute to the expression
of behavior.

Concluding remarks
Large gaps remain in understanding the development of cortical and subcortical motor control,
particularly in human infants (see Outstanding questions). For now, we suggest humility when
making claims about when and how the cerebral cortex translates cognition into action. Likewise,
we suggest caution in asserting that human newborns possess core knowledge, especially if that
knowledge depends on a supporting neural architecture that is developmentally continuous with
that of adults [1,90]. By carefully considering neurobiological plausibility across age, developmen-
tal psychologists will be better positioned to design experiments in which questions, tasks, and
interpretations are suitably matched. Perhaps, then, the field can advance on surer footing and
avoid needless controversies.

At birth and for several months thereafter, the brainstem is largely responsible for motor behavior
in human infants. But the brainstem does not simply hand off responsibility to the cortex and fade
away. Instead, development entails the gradual interdigitation of cortical and subcortical networks
into a functionally integrated whole. Current imaging methods are not yet able to capture this de-
velopmental process and thus cannot address the issue of developmental continuity in infant
cognition and behavior.

Imaging studies in infants do reveal cortical activity suggestive of area-specific processing of
relevant information. But evidence of cortical processing is not evidence of cortical involvement
in motor behavior, even when the cortical processing fits with researchers’ adult-centric expec-
tations. Indeed, in infant rats, individual neurons in M1 increase their activity only after the
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production of movement, indicative of sensory processing [9] (Box 1). Now consider the likely
interpretation of this observation had the M1 recordings been performed using fMRI, a method
with poor temporal resolution compared with single-cell recordings? Given that M1 is so
closely tied to adult motor control, it is likely that researchers would have inferred erroneously
that any fMRI-detected increase in M1 activity contemporaneous with movement reflects the
role of M1 in the production of that movement. Similar problems confront researchers as
they investigate cortical processing and cognition in human infants.

To conclude, researchers should be aware that behavioral indicators of cognitive sophistica-
tion may not reconcile with the neurobiological mechanisms available to support the behav-
iors. Ultimately, a complete and accurate account of the origins of human cognition requires
greater understanding of the complementary relations among cortical and subcortical circuits
and how those relations emerge across early development to support motor behavior and
cognition.
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